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ABSTRACT 

Image Fusion is a process of integrating complementary information from multiple images of the same scene such 

that the resultant image contains a more accurate description of the scene than any of the individual source images. A 

method for fusion of multifocus images is presented. First, multifocus images are decomposed using a discrete wavelet 

transform (DWT). Then an algorithm is proposed in the multiscale wavelet domain to develop a novel fusion rule based on 

fractional lower order moments.  The experimental results on several pairs of multifocus images indicate that the proposed 

algorithm is superior to an existing algorithm by achim et al., in terms of spatial frequency (SF), fusion quality measure 

(QW), edge information preservation (Q
AB/F

) and various other image quality metrics. The performance of the proposed 

algorithm is also compared with simple average and Principal Component Analysis (PCA) techniques. 
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INTRODUCTION 

Multi-sensor image fusion (MIF) [1, 3] is a technique to combine the registered images to increase the spatial 

resolution of acquired low detail multi-sensor images and preserving their spectral information. Of late MIF has emerged 

as a new and promising research area. The benefiting fields from MIF are: Military, remote sensing, machine vision, 

robotic, and medical imaging, etc. Some generic requirements could be imposed on the fusion scheme: (a) the fusion 

process should preserve all relevant information contained in the source images, (b) the fusion process should not introduce 

any artifacts or inconsistencies which would amuse the human observer or following processing stages, and (c) irrelevant 

features and noise should be suppressed to a maximum extent. The problem that MIF tries to solve is to merge the 

information content from several images (or acquired from Different imaging sensors [15]) taken from the same scene in 

order to accomplish a fused image that contains the finest information coming from the original images. Hence, the fused 

image would provide enhanced superiority image than any of the original source images. Dependent on the merging stage, 

MIF could be performed at three different levels viz. pixel level, feature level and decision level. In this paper, pixel-level-

based [2] MIF is presented to represent a fusion process generating a single combined image containing an additional 

truthful description than individual source image. 

FUSION ALGORITHMS 

The details of wavelets and PCA algorithm and their use in image fusion along with simple average fusion 

algorithm are described in this section. 

Image Fusion by Simple Average 

This technique is a basic and straight forward technique and fusion could be achieved by simple average of 

corresponding pixels in each input image as: 
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Principal Component Analysis 

The PCA [6] involves a mathematical procedure that transforms a number of correlated variables into fewer 

number of uncorrelated variables called principal components. The first principal component accounts for as much of the 

variance in the data as possible and each succeeding component accounts for as much of the remaining variance as 

possible. The first principal component is taken to be along the direction with the maximum variance and the second 

principal component is constrained to lie in the subspace perpendicular of the first. The third principal component is taken 

in the maximum variance direction in the subspace perpendicular to the first two and so on. 

PCA Algorithm 

The two source images are arranged in two-column vectors. Steps followed to project this data into a 2-D 

subspace are: 

Step 1: Arrange the data into column vectors. The resulting matrix Z is of dimension nX2 . 

Step 2: Compute the empirical mean along each column. The empirical mean vector eM has a dimension of 21X . 

Step 3: Subtract the empirical mean vector eM from each column of the data matrix Z . The resulting matrix X is of                                                                                                         

            dimension nX2 .                               

Step 4: Find the covariance matrix C of X and mean of expectation using formulae 

      TXXC                                                                                                                                                           (2) 

       Mean of expectation = )cov(X                                                                                                                         (3) 

Step 5: Compute the eigenvectors V and eigenvalue D of C and sort them by decreasing eigen value. Both V and                                                              

            D are of dimension 22 X . 

Step 6: Consider the first column of V which corresponds to larger eigenvalue to compute 1P and 2P as: 
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Image Fusion by PCA 

The input images (images to be fused) ),(1 yxI , ),(2 yxI are arranged in two column vectors and their empirical 

means are subtracted. The resulting vector has a dimension of 2Xn , where n is length of the each image vector. 

Eigenvector and eigenvalues for this resulting vector are computed and the eigenvectors corresponding to the larger 

eigenvalue is obtained. The normalized components 1P , 2P (i.e., 121  PP ) using eq. (4) are computed from the 

obtained eigenvector. The fused image is: 

),(),(),( 2211 yxIPyxIPyxI f                                                                                                                     (5) 
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Lower Order Moments 

The paper is organized as follows: In Section 2, we provide some necessary preliminaries on alpha-stable 

processes with a special emphasis on bivariate models. Section 3 describes our proposed algorithm for wavelet-domain 

image fusion, which is based on fractional lower order moments. Section 4 compares the performance of our proposed 

algorithm with the performance of other current wavelet-based fusion techniques applied on two pairs of test images. 

Finally, in Section 5 we conclude the paper with a short summary. 

Alpha-Stable Distributions 

This section provides a brief, necessary overview of the alpha-stable statistical model used to characterize wavelet 

coefficients of natural images. Since our interest is in modeling wavelet coefficients, which are symmetric in nature, we 

restrict our exposition to the case of symmetric alpha-stable distributions. For detailed accounts of the properties of the 

general stable family, we refer the reader to [11] and [12]. 

Univariate S S Distributions 

The appeal of S S distributions as a statistical model for signals derives from two main theoretical reasons. 

First, stable random variables satisfy the stability property which states that linear combinations of jointly stable variables 

are indeed stable. Second, stable processes arise as limiting processes of sums of independent identically distributed (i.i.d.) 

random variables via the generalized central limit theorem. The S S distribution [14] lacks a compact analytical 

expression for its probability density function (pdf). Consequently, it is most conveniently represented by its characteristic 

function 

)exp()(


 wwjw 
                                                                                                                                  (6) 

Where a is the characteristic exponent, taking values
 
0 <   < 2,   (-  <   < ) is the location parameter, 

and -y (-y > 0) is the dispersion of the distribution. For values of a in the interval [1, 2], the location parameter   

corresponds to the mean of the S S distribution, while for 0 <   < 1,  corresponds to its median. The dispersion 

parameter a determines the spread of the distribution around its location parameter , similar to the variance of the 

Gaussian distribution. The characteristic exponent   is the most important parameter of the S S distribution and it 

determines the Characteristic exponent a is, the heavier the tails of the S S density. This implies that random variables 

following S S distributions with small characteristic   exponents are highly impulsive. One consequence of heavy tails 

is that only moments of order less than a exist for the non-Gaussian alpha-stable family members. As a result, stable laws 

have infinite variance. Gaussian processes [13] are stable processes with   = 2 while Cauchy processes result            

when  = 1. 

Bivariate Stable  

Distributions Much like univariate stable distributions, bivariate stable distributions are characterized by the 

stability property and the generalized central limit theorem [3]. The characteristic function of a bivariate stable distribution 

has the form  
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and where
2

2

2

1),2,1(   , 
 

S is the unit circle, the measure a(.) is called the spectral measure of the a-stable random vector and A is a positive 

semi definite symmetric matrix. Unlike univariate stable distribution, bivariate stable distributions form a nonparametric 

set being thus of much more difficult to describe. An exception is the family multidimensional isotropic stable distributions 

whose characteristic function has the form  

( 1,  2) = exp (j ( 1 1 +  2 2) -  | | )                                                                                                (9) 

The distribution is isotropic with respect to the location point ( 1,  2). The two marginal distributions of the 

isotropic stable distribution are S S with parameters ( 1,  ,  ) and ( 2,  , a). Since our further developments are in 

the framework of wavelet analysis, in the following we will assume that (
1
,  2) = (0, 0). The bivariate isotropic Cauchy 

and Gaussian distributions [10] are special cases for   = 1 and   = 2, respectively.  

PROPOSED FUSION METHOD 

The proposed multifocus image fusion process is accomplished by the following steps: 

Step 1: Decompose the test images into sub bands. The set of images to be fused are analyzed by means of the wavelet    

             transform. 

Step 2: For each subband pair (except the lowpass residuals):  

 Estimate neighborhood dispersions of the test images ϒX1 , ϒX2 using equations    







 log1
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
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(10) 

Where Ce = 0.5772166…. is the Euler constant, and Variance of the variable Y is given by 
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 Compute neighborhood symmetric covariation coefficient ),( 21 XXCorr  
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 Calculate the fused coefficients using the formulae  

2211 XWXWY  Where W1 and W2 are found by as  

follows: (Assume the threshold value of the image as T).
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If  ϒ X1  > ϒX2  then W1= Wmax  and W2= Wmin 

else W1= Wmin and W2= Wmax 

Step 3: Calculated the average coefficients in low pass residuals. Averaging provides a way to average multiple video            

       frames to create a more stable image. 

This module can be used to eliminate pixel vibrations or high frequency image changes.  

Step 4: Reconstruct the fused image from the processed subbands and the low pass residuals.  

EXPERIMENTAL RESULTS 

The proposed method has been tested on several pairs of multifocus images. Five examples are given here to 

illustrate the performance of the fusion process. The source images are assumed to be registered. The first example is 

shown in Figure 1. Figure 1(a) and (b) are two multifocus images with different distances towards the camera, and only 

half part of the clock in either image is in focus. Figure 1(e) is the fusion result by using the proposed method. Figures. 

1(c)-(d) are the fused images by using simple average method [5], principal component analysis method (PCA) 

respectively. The fused results using Average and PCA are worse than that of our proposed method. For further 

comparisons, few objective criteria are used to compare the fusion results. Comparison between Fusion algorithms based 

on objective strategies are shown in Table 1. 

Entropy (H) 

Entropy is used to measure the information content of an image. Entropy is sensitive to noise and other unwanted 

rapid fluctuations. An image with high information content would have high entropy. It is defined as: 


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Where )(ih
fI

is the normalized histogram of the fused image and L represents the number of frequency bins in 

the histogram. 

Standard Deviation (SD) 
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Where )(ih
fI

is the normalized histogram of the fused image ),( yxI f and L number of frequency bins in the 

histogram. Standard deviation is composed of the signal and noise parts. This metric would be more efficient in the 

absence of noise. It measures the contrast in the fused image. An image with high contrast would have a high standard 

deviation.  
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Spatial Frequency (SF) 

Spatial Frequency [16] criterion is 22 CFRFSF    

Where CFandRF are row and column frequency of the fused image and are given as: 
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This frequency in spatial domain indicates the overall activity level in the fused image. A larger Spatial Frequency 

implies better quality the fused image.  

Mutual Information (MI) 

It is a metric defined as the sum of MI [16] between each source image and the fused image. Considering the two 

source images X and Y and a fused image Z 
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Where PX, PY and PZ are the probability density functions in the images X, Y and Z respectively. PZ,X and PZ,Y are 

the joint probability density functions. Thus the image fusion performance mutual information can be defined as 

),(),( ,, yzIxzIMI YZXZ                                                                                                                             (18) 

Thus MI measures the degree of dependence of two images. The larger the value, the better the fusion result. 

Fusion Quality Measure (QW) 

Fusion quality measure QW [17] is defined as: Considering the two source images X and Y and a fused image Z 


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local weight of image X which indicates the relative importance of image X compared to image Y. The larger )(wX the 

more weight is given to image X.    )|( wXS  denote some saliency of image X in window w. It should reflect the local 

relevance of image X within the window w, and it may depend on contrast, variance, or entropy. In a similar fashion 

)(wY  is computed. 

Where 0Q is the overall image quality index, computed by averaging all local local quality indices:  
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Where W is the family of all windows and |W| is the cardinality of W.  

Image quality index Q0 is defined as 

))((
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X denote the mean of X , 
2

X is variance of X and XY is the covariance of X and Y.  

Edge Information Preservation Metric (Q
AB/F

) 

Q
AB/F

 is edge information preservation value [18] and takes between 0 to 1. 

CONCLUSIONS 

In this paper, a new method for multifocus image fusion based on Fractional Lower Order Moments is presented. 

Different image fusion performance metrics have been evaluated. Experimental results on several pairs of multifocus 

images have demonstrated the superior performance of the proposed fusion scheme. 

 
Figure 1: Example 1 (a) Clock 1 (b) Clock 2 (c) Fused Image by Simple Average 

(d) Fused Image by PCA (e) Fused Image by Proposed Method 

 

 
Figure 2: Example 2 (a) Pepsi 1 (b) Pepsi 2 (c) Fused Image by Simple Average 

(d) Fused Image by PCA (e) Fused Image by Proposed Method 
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Figure 3: Example 3 (a) Plane 1 (b) Plane 2 (c) Fused Image by Simple Average 

(d) Fused Image by PCA (e) Fused Image by Proposed Method 

 

 
Figure 4: Example 4 (a) TR1 (b) TR2 (c) Fused Image by Simple Average 

 (d) Fused Image by PCA (e) Fused Image by Proposed Method 

 

 
Figure 5: Example 5 (a) TT1 (b) TT2 (c) Fused Image by Simple Average 

 (d) Fused Image by PCA (e) Fused Image by Proposed Method 
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Table 1: Performance Evaluation Metrics to Evaluate Image Fusion Algorithms for Figures 1-5 

 

Image Method 

Quality Measures 

Entropy 
Standard 

Deviation 

Spatial 

Frequency 

Mutual 

Information 
Q

AB/F
 QW 

Clock 

Average 7.2481 0.1934 6.1851 1.4248 0.5859 1 

PCA 7.2656 0.1934 6.1882 1.4239 0.5867 1 

Proposed 

Method 
7.2792 0.1940 10.6227 1.3619 0.4937 1 

Pepsi 

Average 7.0805 0.1725 9.6653 1.5474 0.6321 0.9933 

PCA 7.0880 0.1725 9.6384 1.5456 0.6281 0.9934 

Proposed 

Method 
7.1586 0.1751 16.9665 1.4506 0.4627 0.9737 

Plane 

Average 6.2620 0.1771 3.7431 0.7344 0.6161 0.9775 

PCA 6.2631 0.1771 3.7404 0.7343 0.6156 0.9773 

Proposed 

Method 
6.2769 0.1792 8.0667 0.7001 0.4591 0.9639 

TR 

Average 7.1521 0.2010 4.5831 1.3585 0.7773 0.0056 

PCA 7.1521 0.2010 4.5832 1.3585 0.7773 0.0055 

Proposed 

Method 
7.1641 0.2016 8.1275 1.3183 0.6644 0.1135 

TT 

Average 7.3357 0.1892 8.7909 1.5185 0.6852 0.9913 

PCA 7.3357 0.1892 8.7903 1.5185 0.6851 0.9913 

Proposed 

Method 
7.3635 0.1916 17.0619 1.3498 0.5314 0.9900 

 

REFERENCES 

1. G. Simone, A. Farina and F.C.Morabito, „Image fusion techniques for remote sensing applications‟, Information 

Fusion, 2002, 3(2): 3-15. 

2. Zhuang Wu, Hongqi Li, „Research on the technique of image fusion based on wavelet transform‟, ISECS, 2009, 

pp. 165-168. 

3. C. Pohl, J. L. Van Genderen, „Multisensor image fusion in remote sensing: concepts, methods and applications‟, 

Remote Sensing, 1999, 19(5): 823-854. 

4. F. Sadjadi, „Invariant algebra and the fusion of multi-spectral information‟, Information Fusion, 2002, 3(1): 39-50. 

5. T. Tirupal, B. Chandra Mohan, “Pixel-Level Multifocus image fusion based on wavelet transform and principal 

component analysis”. Proc. JIEC, 2012, vol.2 (2), ISSN: 2249-9946, pp. 60-64   

6. V. P. S. Naidu, J. R. Raol, „Pixel-level Image Fusion using Wavelets and Principal Component Analysis‟, 

Defence Science Journal, Vol.58, No.3, May 2008, pp. 338-352. 

7. Te-Ming Tu, Shun-Chi Su, Hsuen-Chyun, „A new look at HSI-like image fusion methods‟, Information Fusion, 

2001, 2(5): 177-186. 

8. Gao Shouchuan, Yao Lingtian, „Visual C++ practice and improve-digital image processing and engineering 

application papers‟, Beijing: China Railway Publishing House, 2006. 

9. P. J. Burt and R. J. Kolczynski, „Enhanced image capture through fusion‟, Proc. Fourth Int'l Conf. Comp. Vis.,   

pp. 173-182, 1993. 

10. G. Samorodnitsky and M. S. Taqqu, „Stable Non- Gaussian Random Processes: Stochastic Models with Infinite 

Variance‟, New York: Chapman and Hall, 1994. 



16                  S. Thirupathi Reddy & T. Tirupal 

11. C. L. Nikias and M. Shao, „Signal Processing with Alpha-Stable Distributions and Applications‟, New York: John 

Wiley and Sons, 1995. 

12. J. P. Nolan, „Multivariate stable distributions: approximation, estimation, simulation and identification‟, in A 

Practical Guide to Heavy Tails (R. J. Adler, R. E. Feldman, and M. S. Taqqu, eds.), Boston: Birkhauser, 1998. 

13. X. Ma and C.L.Nikias, „Parameter estimation and blind channel identification in impulsive signal environment‟, 

IEE Tran. Sign. Proc., vol. 43, pp. 2884-2897, Dec. 1995. 

14. B. Garel, L. d'Estampes, and D. Tjostheim, „Re- vealing some unexpected dependence properties of linear 

combinations of stable random variables using symmetric covariation‟, Comm. Stat. – Theory and Methods,     

vol. 33, no. 4, pp. 769-786, 2004. 

15. Varsheny, P. K, „Multi-sensor data fusion‟, Elec.Comm. Engg., 1997, 9(12), 245-53. 

16. X.Li, M.He, M.Roux, „Multifocus image fusion based on redundantwavelet transform‟, IET image process., 2010, 

vol. 4, (4), pp. 283-293  

17. Piella G, Heijmans H, „A new quality metric for image fusion. Proceedings of international conference on image 

processing (ICIP)‟, vol. 3. p. 173–6. 

18. Xydeas CS, Petrovic V, „Objective image fusion performance measure‟, Electron Lett 2000; 36(4):308–9. 


